
Macintosh Technical Notes

New Technical Notes

Developer Support

®Macintosh

Macintosh Portable ROM Expansion
Hardware M.HW.PortableROMExp

Written by: Dennis Hescox October 1989

This Technical Note explains the practice of and theory behind compatible use of the
expansion ROM in the Macintosh Portable.

Due to the unique nature of the Macintosh Portable, developers now have the ability to add
ROM to the Macintosh. To provide for compatible shared use of this ROM space with
Apple and other developers, this Note describes the feature and suggests methods of shared
implementation.

Address Space

The Macintosh Portable contains 256K of processor ROM, which is fundamentally the same
as the ROM in the Macintosh SE. This ROM is located at the low end of a 1 MB ROM
space. With an expansion card, one can either completely replace the 1 MB ROM or simply
add an additional 4 MB of ROM. The original 1 MB of address space is reserved for use by
Apple, but the additional 4 MB address space is available for third-party developers.

Apple reserved ROM space is located from $90 0000 through $9F FFFF. You can replace
this ROM space with an expansion board, thus overriding these ROMs; however, if you
override these ROMs your machine will no longer work with most applications. This ability
to override the original ROMs is intended for Apple in the event that a ROM upgrade is ever
necessary for the Macintosh Portable. Developers should use the 4 MB ROM address space
from $A0 0000 through $DF FFFF, which is illustrated in Figure 1, for expansion.

Since Apple could provide a ROM upgrade (on a ROM expansion board), we recommend
that developers use a standard 32-pin DIP socketed ROM part for any expansion board.
Following this recommendation ensures that the user will never have to choose between an
Apple ROM upgrade and a third-party expansion board, since Apple could provide sockets
for third-party ROMs if we were to produce such an upgrade.

Developer Technical Support October 1989

Macintosh Technical Notes

Reserved Hardware
PDS ROM

ROM
Expansion

System ROM

RAM
Expansion

RAM/ROM Overlay

$100 0000
$F0 0000
$E0 0000
$D0 0000
$C0 0000
$B0 0000
$A0 0000
$90 0000
$80 0000
$70 0000
$60 0000
$50 0000
$40 0000
$30 0000
$20 0000
$10 0000
$00 0000

Figure 1–Macintosh Portable Memory Map

Expansion ROM Board

If Apple were to produce an expansion ROM board for an upgrade, it would have the
following characteristics. Side one would contain four 32-pin ROM sockets compatible with
128K x 8 bit or 512K x 8 bit ROMs, a dip switch for choosing between 128K or 512K
socket address sizes, and appropriate decoupling capacitors. Side two would contain Apple’s
expansion ROMs and any additional circuitry. This design implies that developers would be
able to use at most either 512K or 2 MB of the total 4 MB expansion space.

When designing your own expansion board, remember that it must contain circuitry for
decoding, controlling, and buffering, and it should use CMOS, since the Macintosh Portable
restricts ROM expansion boards to a maximum of 25ma. The number of wait states inserted
depends upon the DTACK generated by your board, which connects to the Macintosh
Portable through a single 50-pin connector (slot). The machine provides all of the
appropriate signals (address bus, data bus, and control) to the expansion slot, where they are
decoded into chip selects and routed to address and data buffers. These signal names and
descriptions are illustrated in Figure 2 and described in Table 1. It is also important to buffer
the address and data buffers to reduce capacitive loading.

Developer Technical Support October 1989

Macintosh Technical Notes

+5V
A2
A4
A6
A8

A10
A12
A14
A16
A18
A20
A22

GND
/DTACK

/ROM_CS
/EXT_DTACK

D0
D2
D4
D6
D8

D10
D12
D14
+5V

A1
A3
A5
A7
A9
A11
A13
A15
A17
A19
A21
A23
GND
/AS
16Mhz_Clock
/DELAY_CS
D1
D3
D5
D7
D9
D11
D13
D15
+5V

2
4
6
8

10
12
14
16
18
20
22
24
26
28
30
32
34
36
38
40
42
44
46
48
50

1
3
5
7
9

11
13
15
17
19
21
23
25
27
29
31
33
35
37
39
41
43
45
47
49

—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—

—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—

Figure 2–Internal ROM Expansion Connector Signals

Pin Number Signal Name Signal
Description

1 +5V Vcc
2-24 A1-23Unbuffered 68HC000

address signals A1-23
25-26 GND Logic Ground
27 /DTACK /DTACK input to

68HC000
28 /AS 68HC000 address strobe

signal
29 /ROM_CS Permanent ROM chip

select signal. Selects in range $90
0000 through $9F FFFF.

30 16 Mhz_clock 16 Mhz system
clock.

31 /EXT_DTACK External
/DTACK signal that disables main
system /DTACK

32 /DELAY_CS This signal is
generated by the addressing PAL
and is used to put the ROM board
into the idle mode by inserting
multiple wait states.

Developer Technical Support October 1989

Macintosh Technical Notes

33-48 D0-1568HC000 unbuffered data
signals D0-15

49-50 +5V Vcc

Table 1–Internal ROM Expansion Connector Signal Descriptions

51.94 [2.045]

60.42 [2.379]

68.58 [2.700]

58.55 [2.305]

7.62 [.300]

(3x) 3.00 [.118]
ESD Grounding Strip
both sides of PCB

(3x) 3.38 [.133]
Tooling Holes

2.34 [.092] 5.37 [.211]

See Detail A

50-Pin Connector
-10.11 [-.398]

-27.28 [-1.074] 68.18 [2.684]

Pin 1

Dimensions are in Millimeters [Inches]

Detail A
6.00 [.236]

6.00 [.236]
No components or traces.
This area for grounding to
rear cover. Both Sides.

Figure 3–Internal ROM Expansion Board Guidelines

Software Standards

For the purposes of expansion ROM, Apple has introduced Electronic Disks (EDisks), which
appear to the user as very fast, silent disk drives. The EDisk driver supports EDisks, which
use RAM or ROM as their storage media.

ROM EDisks, which can be produced by third parties, are connected to the system using the
internal ROM expansion slot. The 4 MB address space allocated for this type of expansion
supports any number of ROM EDisks, as long as they start on a 64K boundary (their size
may exceed 64K). ROM EDisks behave like RAM EDisks, except that they are read-only
and cannot be resized.
The EDisk Driver
Developer Technical Support October 1989

Macintosh Technical Notes

The EDisk driver provides a system interface to EDisks similar to that provided by the Sony
and SCSI disk drivers. It supports 512 byte block I/O operations and does not support file
system tags. The EDisk driver is a ROM 'DRVR' resource with an ID of 48, RefNum of -
49, and driver name of “.EDisk”. Since it is a disk driver, it also creates a Drive Queue
Element for each EDisk. Information on how these driver calls apply to the Sony driver
appear in the Disk Driver chapters of Inside Macintosh, Volumes II, IV, & V.

EDisk Implementation Details

The remainder of this section describes some of the implementation details, data formats,
and algorithms used by the EDisk driver that may be useful for developers who want to
produce ROM EDisks.

Data Checksumming

To provide better data integrity, the EDisk driver supports checksumming of each data block,
which is computed when a write is performed to a block and checked on every read
operation. It computes a 32-bit checksum for each 512-byte block. This calculation is
performed by adding each longword in the block to a running longword checksum, which is
initially zero, and is rotated left by one bit before each longword is added. The following
assembly code demonstrates this algorithm:

Lea TheBlock,a0 ; A0 is pointer to the block to checksum
Moveq.L #0,D0 ; D0 is the checksum, initially zero
Moveq.L #(512/4)-l,D1 ; loop counter for 1 block (4 bytes per iteration)

@Loop Rol.L #l,D0 ; rotate the checksum
Add.L (A0)+,D0 ; add the data to the running checksum
Dbra D1,@Loop ; loop through each longword in the block

Internal ROM EDisk Details

When the EDisk driver is opened, it searches the address range from the base of the system ROM to $00E0 0000 for internal
ROM EDisks. An internal ROM EDisk must begin with an EDisk header block, which must start on a 64K boundary (but may be
any size). If a valid header block is found, it is compared to all other known headers, and if it is identical to another, it is ignored
to eliminate duplicates caused by address wrapping. If the header block is unique, the EDisk driver supports it and creates a drive
queue entry for it. The driver can support any number of internal ROM EDisks, and it is limited only by the address space
allocated for ROM.

EDisk Header Format

There is a 512-byte header block associated with ROM EDisks. This header describes the layout of the EDisk and uniquely
identifies it. The general format of the header block is described below. The EDisk header marks the beginning of an EDisk, and
it should occur at the beginning of the ROM space that is used for EDisk storage (i.e., starting at the first byte of a 64K ROM
block).

EDiskHeader Record 0,increment ; layout of the EDisk signature block
HdrScratch DS.B 128 ; scratch space for r/w testing and vendor info
HdrBlockSize DS.W 1 ; size of header block (512 bytes for version 1)
HdrVersion DS.W 1 ; header version number (this is version 1)
HdrSignature DS.B 12 ; 45 44 69 73 6B 20 47 61 72 79 20 44
HdrDeviceSize DS.L 1 ; size of device, in bytes

Developer Technical Support October 1989

Macintosh Technical Notes
HdrFormatTime DS.L 1 ; time when last formatted (pseudo unique ID)
HdrFormatTicks DS.L 1 ; ticks when last formatted (pseudo unique ID)
HdrCheckSumOff DS.L 1 ; offset to the Checksum table, if present
HdrDataStartOff DS.L 1 ; offset to the first byte of data storage
HdrDataEndOff DS.L 1 ; offset to the last byte+l of data storage
HdrMediaIconOff DS.L 1 ; offset to the media Icon and Mask, if present
HdrDriveIconOff DS.L 1 ; offset to the drive Icon and Mask, if present
HdrWhereStrOff DS.L 1 ; offset to the Get Info Where: string, if present
HdrDriveInfo DS.L 1 ; longword for Return Drive Info call, if present

DS.B 512-* ; rest of block is reserved
EDiskHeaderSize EQU * ; size of EDisk header block

ENDR

HdrScratch is a 128-byte field that is used for read and write testing on RAM EDisks to determine if the memory is
ROM or RAM. On ROM EDisks, it should be filled in by the vendor with a unique string to identify
this version of the ROM EDisk (e.g., “Copyright 1989, Apple Computer, Inc. System Tools 6.0.4
9/5/89”).

HdrBlockSize is a 2-byte field that indicates the size of the EDisk header block. The size is currently 512 bytes.

HdrVersion is a 2-byte field that indicates the version of the EDisk header block. The version number is currently
$0001.

HdrSignature is a 12-byte field that identifies a valid EDisk header block. The signature must be set to 45 44 69
73 6B 20 47 61 72 79 20 44 in hexadecimal.

HdrDeviceSize is a 4-byte field that indicates the size of the device in bytes, which may be greater than the actual usable
storage space. One might also think of the device size as the offset (from the beginning of the header
block) of the last byte of the storage device.

HdrFormatTime is a 4-byte field that indicates the time of day when the EDisk was last formatted. The EDisk driver
updates this for RAM EDisks when the format control call is made. This information may be useful for
uniquely identifying a RAM EDisk.

HdrFormatTicks is a 4-byte field that indicates the value of the system global Ticks when the EDisk was last formatted,
which should be a unique number. The EDisk driver updates this for RAM EDisks when the format
control call is made. This information may be useful for uniquely identifying a RAM EDisk.

HdrCheckSumOff is a 4-byte field that is the offset (from the beginning of the header block) of the checksum table, or zero
if checksumming should not be performed on this EDisk.

HdrDataStartOff is a 4-byte field that is the offset (from the beginning of the header block) of the first block of EDisk
data.

HdrDataEndOff is a 4-byte field that is the offset (from the beginning of the header block) of the byte after the end of the
last block of EDisk data.

Developer Technical Support October 1989

Macintosh Technical Notes

HdrMediaIconOff is a 4-byte field that is the offset (from the beginning of the header block) of the 128-byte icon and 128-
byte icon mask, which represents the disk media. An offset of zero indicates that the EDisk driver
should use the default media icon for this EDisk.

HdrDriveIconOff is a 4-byte field that is the offset (from the beginning of the header block) of the 128-byte icon and 128-
byte icon mask, which represents the disk drive physical location. An offset of zero indicates that the
EDisk driver should use the default drive icon for this EDisk.

HdrWhereStrOff is a 4-byte field that is the offset (from the beginning of the header block) of the Pascal string that
describes the disk location for the Finder Get Info command. An offset of zero indicates that the EDisk
driver should use the default string for this EDisk.

HdrDriveInfo is a 4-byte field that should be returned by the drive information control call. A value of zero indicates
that the EDisk driver should use the default drive info for this EDisk.

You should not override the default media or drive icons without first giving serious consideration as to how a different icon will affect the user
interface. What often appears to be a clever idea for a cute icon usually turns out to be a source of frustration for the user when deciding what
the item is and where it is physically located.

Some Final Thoughts

Do Not Use More Space Than You Need

As wonderful and indispensable as your ROM product may be, users may wish to also use
ROMs from another developer. Although ROM address space is quite large (in today’s
terms), board space and number of ROM chip sockets is limited. If you use only the space
you really need and leave room (address space and empty chip sockets) in your ROM
product to add other ROMs, users will never have to make a choice between your product
and another, unanticipated stroke of genius.

Keep It Relocatable

Just because your code is in ROM does not mean that it will always reside at a specific
address. When moving your ROM to another board (an Apple upgrade or another third-
party board), users should neither have to worry about address range conflicts nor socket
location. In addition, Apple may implement ROM expansion in a future product with
expanded or different address space; keeping your ROM code relocatable could mean the
difference between additional sales or incompatibility and upgrades.

Further Reference:
• Inside Macintosh, Volume II, IV, & V, The Disk Driver

Developer Technical Support October 1989

